![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEipTWjgMd8RcBr67ECbicu43pedLdPih4kd9oFHcdfoDOV8EvUmaVwYYNBbuxn5L0Uey7cyvE6Zin7cDUYhj8xAUQplmm4O0aoUWtxfUfeB2P1u8S4Jar2aNS6J21cHm7D3sDt8pNKY6XLB/s400/superv3.png)
The ideal generating this is from what I call the "super three-vortex problem", the equations for the central configurations of a 1/r^2 potential:
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjTdfXz7JrBcGPmELMNWfu6lTulvmRKYhXl_CAF6gMb3fCjL7WiN17YKg5bfYs2327BmUptirXtvh689xKDkeNA860Rn6QqkCtgh0V1XMzZtTS58kUGz2sb5LaY84x_e1uIz5wdy4_2ILdn/s400/superv3.png)
I am mainly interested in the nonzero solutions of this system. To get at those, we can saturate the ideal - or in practical terms we can introduce a new variable, w, and add the equation
w*s12*s13*s23 - 1 = 0
to the ideal. The 3D Groebner fan of the resulting system can be seen here.
No comments:
Post a Comment